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Abstract

An algorithm based on operator splitting has been successfully implemented for solving unsteady, advection-

dominated transport problems in 3-D. Specifically, the general operator-integration-factor splitting method of Maday

et al. is applied to the unsteady advection–diffusion equation with source/sink terms. The algorithm incorporates a 3-D

characteristic Galerkin scheme to treat advection, and a standard Galerkin treatment of the diffusion and source/sink

terms. Up to third-order operator splitting was implemented and validated against several analytical solutions.

The algorithm showed the expected error behaviour and good performance in modeling advection-dominated

transport problems. The practical utility and effectiveness of the proposed numerical scheme was further demonstrated

by solving the Graetz–Nusselt problem, i.e. high Peclet number mass/heat transport in a fully developed pipe flow.
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1. Introduction

The dimensionless form of the governing equation for advective–diffusive transport is

oc
ot

þ ~VV � rc ¼ 1

Pe
r2cþ f ; ð1Þ

where cð~xx; tÞ is the transported scalar, and ~VV ð~xx; tÞ is a known velocity field, Pe ¼ V0L0=D is the Peclet

number (D is the diffusion coefficient, and V0 and L0 are characteristic velocity and length scales), and f
represents source or sink terms.

Numerical solution of Eq. (1) can be challenging, due in part to the mixed hyperbolic–parabolic nature
of the equation. A successful numerical scheme must efficiently treat both the advection (hyperbolic) and
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unsteady diffusion (parabolic) terms. For diffusion dominated cases, most conventional numerical schemes
(e.g. the standard Galerkin finite element approach) behave reasonably well, and fairly reliable results are

achieved. However, when advective effects dominate, the results of such schemes are unsatisfactory, for the

reasons summarized in [20]. Advection-dominated transport phenomena occur in many fields of physics

and engineering. Examples are heat transfer processes in rubber extrusion, plastic casting and mould filling

[5,15,33], fluid flow and contaminant transport in porous media [7,12,30], atmospheric and ocean modeling

[23,28,32], and cardiovascular mass transport processes [19,21].

The conventional Galerkin finite element method of spatial discretization, along with classical time

discretization methods, fail to produce satisfactory solutions to �near-hyperbolic� advection-dominated
transport problems. Spurious oscillations are generated, particularly in regions of high gradients in the

solution, which can corrupt the whole solution. These oscillations may in general be eliminated by spatial

mesh refinement in zones of high gradients, accompanied by temporal refinement in time-dependent

problems. However, for large problems in 3-D, this is usually not feasible. Numerous approaches have been

proposed to preclude oscillations in advection-dominated transport problems, regardless of mesh or time

step refinement. These schemes can be divided into three broad groups: Eulerian, Lagrangian, and Eule-

rian–Lagrangian. These three classes of schemes are reviewed in [20] in the context of finite element

methodology. Briefly, the Eulerian methods are ‘‘local’’ in the sense that the spatial derivative in the ad-
vection equation is approximated based on the information at the neighboring nodal points. The most

popular Eulerian schemes for advection are: the streamline upwind Petrov–Galerkin [4,17,22], Galerkin/

Least-squares [16,29], and Taylor–Galerkin [9–11] methods. All these methods take into account the hy-

perbolicity of the equation and introduce some kind of stabilization terms.

A major drawback of all Eulerian methods is that, for either stability (in the case of explicit time

stepping) or accuracy (in the case of implicit time marching) reasons, the time step size (local Courant

number) is limited through a Courant–Friedrichs–Levy (CFL) restriction [8].

In the Lagrangian schemes (see for example [1]) the computational mesh moves along the characteristics
(fluid trajectories). In practice, stretching and shearing of the original fluid particles distort the mesh after a

few time steps, and hence these methods are rarely used.

In Eulerian–Lagrangian or characteristic methods, the advection step is treated using a Lagrangian

tracking algorithm along characteristic lines while keeping the computational grid fixed. Points from within

the Eulerian grid are tracked backward along the characteristics over the time step, thereby forming a

Lagrangian virtual grid. Numerical information from the previous time level is projected from the back-

ground Eulerian grid onto the Lagrangian grid. A significant advantage of the characteristic methods is

that, owing to the Lagrangian nature of the advection step, the CFL restriction is relaxed. Moreover,
because the spatial and temporal discretizations are combined as a result of the Lagrangian tracking, the

temporal discretization error is reduced markedly. Several versions of the characteristic method have been

proposed in the literature (see for example [3,18,26,31]). In the finite element context, the characteristic

schemes combine the classical method of characteristics with a Galerkin finite element approximation.

An attractive approach to solution of the advection–diffusion equation across a wide range of Pe is to
employ an operator splitting approach, which decouples the advection and diffusion operators by first

advecting the scalar field (usually explicitly) and then diffusing it (usually implicitly). In this approach, the

two operators of different mathematical nature are split and each is treated by a numerical scheme that best
mimics the underlying physics of the respective operator.

The objective of the present work was to develop an efficient algorithm for solving the 3-D advection–

diffusion transport equation using fully unstructured grids. In particular, the algorithm was required to

work well for advection-dominated transport phenomena, i.e. with extremely high Pe values. To achieve

this goal, we used the high-order operator-integration-factor splitting method of Maday et al. [24]. The

advective terms in the unsteady advection–diffusion equation were treated by the characteristic Galerkin

scheme briefly described in Section 2.2 (a detailed description and characterization of this scheme can be
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found in [20]). The present paper shows the practical utility and effectiveness of the proposed numerical
schemes.

2. Methods

2.1. Operator splitting for advection–diffusion equation

The advection–diffusion equation can be rewritten as:

oc
ot

¼ Dcþ Ccþ f ; ð2Þ

where

D ¼ r � 1

Pe
r

� �

is the diffusion operator, and C ¼ �~VV � r is the advection operator. Following the operator-integration-

factor splitting method of Maday et al. [24] (see also [3]), Eq. (2) is written in terms of an integration factor

in C

o

ot
ðQðt�;tÞ

C cðtÞÞ ¼ Q
ðt�;tÞ
C ðDcþ f Þ; ð3Þ

where t� is an arbitrary, but fixed, time. The integration factor Q
ðt�;tÞ
C is defined by

o

ot
ðQðt�;tÞ

C Þ ¼ �Q
ðt�;tÞ
C C ð4Þ

and

Q
ðt�;t�Þ
C ¼ I; ð5Þ

where I is the identity operator. Eq. (3) can be viewed as a pure diffusion problem for the new variable

Q
ðt�;tÞ
C c, to be integrated in time by a suitable method for the diffusion operator D. If t� ¼ tnþ1, application of

a kth order Gear�s backward differencing scheme with a time step Dt ¼ tnþ1 � tn to Eq. (3) gives the fol-
lowing semi-discrete system

b0c
nþ1 �

Pk
i¼1 biQ

ðtnþ1;tnþ1�iÞ
C cnþ1�i

Dt
¼ Dcnþ1 þ f nþ1: ð6Þ

The coefficients bi of the various schemes are listed in [6].

Integration of the diffusion equation, Eq. (3), requires evaluating the integration terms of the form

Q
ðtnþ1;tnþ1�iÞ
C cnþ1�i, ði ¼ 1; 2; . . . ; kÞ. To avoid explicit construction of Q

ðtnþ1;tnþ1�iÞ
C , an auxiliary variable ~ccðsÞ is

introduced that satisfies the following initial value problem

o~ccðsÞ
os

¼ C~ccðsÞ; 0 < s < iDt

~ccð0Þ ¼ cnþ1�i:

8<
: ð7Þ

It then follows that

Q
ðtnþ1;tnþ1�iÞ
C cnþ1�i ¼ ~ccðiDtÞ: ð8Þ

Eq. (7) accounts for the pure advection step, and can be solved using a suitable scheme with a time

step Ds (which can be different from Dt). It is noteworthy that the integration factor Q
ðtnþ1;tnþ1�iÞ
C is never
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constructed explicitly. Rather, its role is played through the solution of the corresponding advection
problem (Eq. (7)). In the present work we solve Eq. (7) using the characteristic Galerkin method outlined in

Section 2.2 (further details of this scheme and its chacaterization can be found in [20]). The diffusion step

(Eq. (3)) was solved using a standard Galerkin method, as briefly described in Section 2.3.

2.2. Treatment of the advection step

Consider the linear advection equation

oc
ot

þ ~VV � rc ¼ 0; ð9Þ

where cð~xx; tÞ is an advected scalar and ~VV ð~xx; tÞ is a known velocity field. The initial condition is

cð~xx; t ¼ 0Þ ¼ c0ð~xxÞ; ð10Þ
and boundary data are defined on the inflow portion of the computational domain.

Denote the position of a fluid element at time t, which was (or will be) at~xx at time s, by ~XX ð~xx; s; tÞ. Then
the characteristic curves of this equation, along which c remains constant, are defined by

d~XX
dt

ð~xx; s; tÞ ¼ ~VV ð~XX ð~xx; s; tÞ; tÞ ð11Þ

with

~XX ð~xx; s; sÞ ¼~xx: ð12Þ
Once the characteristics are known from Eq. (11), the solution to the advection equation is

cð~XX ð:; t; t þ sÞ; t þ sÞ ¼ cð:; tÞ; ð13Þ
where s is a time interval. When discretized in time with time step Dt, tn ¼ nDt, the characteristics can be

used to define

~xx ¼ ~XX ð~yy; tnþ1; tnÞ ð14Þ

and

~yy ¼ ~XX ð~xx; tn; tnþ1Þ: ð15Þ
Here~xx and~yy denote the departure point (at the ‘‘foot’’ of the characteristic line) at time tn, and the arrival

point (at the ‘‘head’’ of the characteristic line) at time tnþ1, respectively (see Fig. 1).

When discretized in time, Eq. (13) results in

cnþ1ð~yyÞ ¼ cnð~xxÞ: ð16Þ
In line with the Galerkin formulation, Eq. (16) is next multiplied by a weighting function w and is in-

tegrated over the spatial domain (at time tnþ1) [2,25–27]. The weighting functions w are chosen as equal to

the Eulerian basis functions (at time tnþ1):Z
X
cnþ1ð~yyÞwdX ¼

Z
X
cnð~xxÞwdX: ð17Þ

The scalar field is now expressed as a function of finite element basis functions and time-dependent coef-

ficients (nodal values), resulting in

X
j

Cnþ1
j

Z
X

/jð~yyÞ/ið~yyÞd~yy ¼
X
j

Cn
j

Z
X

/jð~xxÞ/ið~yyÞd~yy: ð18Þ
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The left hand side of Eq. (18) leads to a linear system with a symmetric, positive-definite mass matrix

(having all negative and real eigenvalues) which is easily inverted using standard methods, such as a pre-

conditioned conjugate-gradient technique. This avoidance of non-symmetric contributions from the ad-

vection operator is a major advantage of the characteristic Galerkin method.

We now restrict our attention to linear triangular elements (in 2-D) and linear tetrahedral elements (in 3-

D). Area coordinates (2-D) and volume coordinates (3-D) (Lk; k ¼ 1; . . . ; d, where d ¼ 3 for 2-D and d ¼ 4
for 3-D), defined over the triangular and tetrahedral elements respectively, are employed as basis functions.

Then the left hand side of Eq. (18) becomes

X
ele

Xd

j¼1
Cnþ1

j

Z
D

/jð~yyÞ/ið~yyÞd~yy ¼
X
ele

Xd

j¼1
Cnþ1

j

Z
D
LjLi d~yy i ¼ 1; . . . ; d; ð19Þ

where D is the area/volume of the triangle/tetrahedral element in 2-D/3-D, respectively. This integral can be

exactly determined by using well-known identities. The computation of the right hand side of Eq. (18)

(‘‘RHS projection’’), represents the L2-projection of numerical information from the Eulerian background

grid onto the Lagrangian grid. The /ið~yyÞ are piecewise linear over the Eulerian element~yy, whereas /jð~xxÞ are
piecewise linear over the Lagrangian element~xx. Hence, exact evaluation of the RHS projection is in general
not possible, and an approximate method is required.

In the present algorithm, the Gaussian quadrature points of the Eulerian element were backtracked, and

the Eulerian background elements that contain the departure points of these quadrature points were lo-

cated. The scalar values at these departure points were then determined by interpolation from the Eulerian

background grid at tn. Finally, the RHS integral was approximated using Gaussian quadrature:Z
X
cnð~xxÞ/ið~yyÞd~yy ¼

X
ele

X
k

wkcnð~xxkÞ/ið~yykÞ: ð20Þ

Here, the index k refers to the quadrature points and cnð~xxkÞ is the scalar value at the departure point of
quadrature point k.

Further specification of the characteristic Galerkin scheme, as well its characterization and practical

implementation details, can be found in [20].

2.3. Treatment of the diffusion step

Consider the unsteady diffusion equation in non-dimensional form

oc
ot

¼ 1

Pe
r2cþ f ; ð21Þ

Fig. 1. Schematic of Eulerian and Lagrangian grids for a characteristic Galerkin method.
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where the variables are as previously described. A standard Galerkin scheme is suitable for the solution of

this equation, and yields the following semi-discrete form:

½M 
 dfcg
dt

¼ ½D
fcg þ fF g; ð22Þ

where ½M 
 and ½D
 are the mass and diffusion matrices defined as Mij ¼
R

X /i/j dX and

Dij ¼ �
Z

X
r/i �

1

Pe
r

� �
/j dX;

respectively, fF g is the source/sink vector defined as Fi ¼
R

X /if dX, and /i is an Eulerian basis function.
This scheme was implemented using tetrahedral finite elements with trilinear (volume coordinate) basis

functions. The semi-discrete system was temporally discretized using Gear�s implicit backward differencing

method of order k, giving the following fully discrete system of equations:

ðb0½M 
 � Dt½D
Þfcgnþ1 ¼
Xk

i¼1
bi½M 
fcgnþ1�i þ fF gnþ1: ð23Þ

3. Tests and results

The advection and diffusion solvers were first tested separately. The results of benchmarking the ad-

vection scheme are reported in the companion paper [20]. One of the test cases performed to benchmark the
diffusion solver is described in Section 3.1. The overall operator splitting advection–diffusion solver was

then tested against several benchmark problems as described in Section 3.2.

3.1. Test case for diffusion: algebraic solution testing

Simple analytic solutions to Eq. (21) were employed to test the diffusion solver. The analytic solutions

were constructed using first-order polynomials in space, i.e. lying within the functional space spanned by the

shape functions, /i. This allowed the temporal error performance of the numerical scheme to be examined
even on a relatively coarse grid. The source term, f ð~xx; tÞ, was chosen to be f ð~xx; tÞ ¼ ðp þ 1Þtpðxþ y þ zÞ, in
which case an exact solution is cexactð~xx; tÞ ¼ tpþ1ðxþ y þ zÞ, where f balances oc=ot. In order to test a time

marching scheme of order k, it is necessary that p in the above solution satisfy pP k. In this study, we

satisfied this requirement by simply choosing p ¼ k.
The algorithm was tested against these analytical solutions on a very coarse grid as follows. The com-

putational domain X ¼ ½�1; 1
3 was meshed with a 5 5 5 grid. This grid was formed by uniformly

distributing five points on each edge of the cube, and dividing the domain into smaller cubes based on these

points. Each subcube was then subdivided into five tetrahedral elements. Dirichlet boundary conditions,
based on the analytical solution, were imposed on the domain boundaries. Runs were performed with

different time steps to a final time of t ¼ 2.

The L1 norm of the error at the final time t ¼ 2 is shown as a function of time step size in Fig. 2 for first-,

second- and third-order versions of the above algorithm. Linear least-squares fitting of the log–log

transformed data in Fig. 2 gave average slopes of 1.0, 1.9 and 2.8 for the first, second, and third-order

schemes. This is close to the expected convergence rates, confirming the temporal performance of our

implementation of the Gear�s backward differencing scheme.
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As an aside, we note that the global error plotted in Fig. 2 shows a dependence on Pe for values of

Pe6 102. This dependence is more explicitly demonstrated in Fig. 3, where the error is plotted against Pe for
various time step sizes, Dt. At first sight, this behaviour may seem erroneous, since the analytic solutions are

linear in~xx, and as such ð1=PeÞr2c (which is the only term involving Pe) should vanish identically and not

make any contribution to the scheme�s performance. This behavior can best be understood by considering a
simple 1-D problem on a uniform mesh of spacing Dx. In this case, it is straightforward to derive the

equivalent differential equation [13] for the scheme, and show that for the above form of cexact, the error in
the numerical solution � ¼ ccomputed � cexact must satisfy:

o�

ot
� 1

Pe
o2�

ox2
¼ � Dtk

ðk þ 1Þ!
okþ1cexact
otkþ1

þ higher-order terms ð24Þ

for Gear�s kth order backward differencing schemes. From this equation, it is clear that � will be sensitive to
Pe for small to moderate values of Pe, in which case the second term will dominate the first.

From Eq. (24) it is clear that the error should scale with Dtk, be independent of Pe for large Pe, and
decrease with decreasing Pe for small Pe. This is in fact what is observed (Fig. 4), where the dependence of

error on Pe for Pe6 100 is clearly seen.

Fig. 2. Global error at time t ¼ 2 versus Dt with (from left to right) first-, second- and third-order Gear�s backward time stepping

methods. The slope of error plots in log–log scale is indicative of the order of the scheme (test case: algebraic solution testing for

diffusion).

Fig. 3. Global error at time t ¼ 2 versus Pe obtained with various time step sizes. The three panels represent results using (from left to

right) first- through third-order Gear�s backward differencing scheme (test case: algebraic solution testing for diffusion).
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3.2. Test cases for advection–diffusion

3.2.1. Test case 1: Algebraic solution testing

This test case was the same as that described in Section 3.1, except that here the velocity field was chosen
~VV such that ~VV � rcexact ¼ 0. This again allowed testing of the temporal error performance of the overall

advection–diffusion scheme on a relatively coarse mesh. More specifically, we chose f as above and
~VV ¼ ð1=4;�1=4; 0Þ, in which case the corresponding analytic solutions were cð~xx; tÞ ¼ tpþ1ðxþ y þ zÞ. The
exponent p was chosen as equal to the order of the scheme to be tested.

The schemes were tested against these analytical solutions on the same coarse mesh as used in Section

3.1. Dirichlet boundary conditions, based on the analytical solution, were imposed on the domain

boundaries. Runs were performed with different time steps to a final time of t ¼ 2. The L1 norm of the error
at the final time t ¼ 2 is shown as a function of time step size in Fig. 5 for these schemes.

Regression analysis on the log–log transformed data confirmed that the splitting scheme was working as

expected, i.e. demonstrating consistent convergence behaviour. The dependence of global error on Pe seen
in Section 3.1 was observed in this case as well.

Fig. 4. Global error at time t ¼ 2 normalized by Dtk versus Pe obtained with various time step sizes. The three panels represent results
using (from left to right) first- through third-order Gear�s backward differencing scheme (test case: algebraic solution testing for

diffusion).

Fig. 5. Global error at time t ¼ 2 versus Dt with (from left to right) first-, second- and third-order operator splitting methods (test case

1: algebraic solution testing for advection–diffusion).
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3.2.2. Test case 2: Advection–diffusion of a Gaussian sphere

The overall performance of the scheme was next tested by simulating the advection and diffusion of an

initially 3-D Gaussian distribution of tracer material. The velocity field ~VV was assumed to be constant and

uniform, in which case the exact solution has the form

cexactð~xx; tÞ ¼
r0

r


 �3

exp

�
� 1

2r2
½~xx� ð~xxc þ ~VV tÞ
2


; ð25Þ

where the time-dependent standard deviation is given by

rðtÞ ¼ r2
0

�
þ 2t
Pe

�1=2

: ð26Þ

r0 is the initial standard deviation of the Gaussian distribution, and~xxc is the initial position of the center of
the Gaussian distribution. Time-dependent Dirichlet boundary conditions, based on the analytical solution,

were imposed on the domain boundaries.

The computational domain X ¼ ½�1; 1
3 was meshed with a 30 30 30 grid. This grid was formed by

uniformly distributing 30 points on each edge of the cube, and dividing the domain into smaller cubes based

on these points. Each subcube was then subdivided into five tetrahedral elements. We used the following

parameters: ~VV ¼ ð1=2; 1=2; 0Þ and Pe ¼ 106. This corresponded to a grid Peclet number of approximately
PeD ¼ 3:3 104. The initial Gaussian sphere was centered at ~xxc ¼ ð�1=4;�1=4; 0Þ and had an initial

standard deviation r0 ¼ 0:2. To eliminate start-up transients in the calculation of the error field, the

characteristics associated with the advective solver were allowed to back-track ‘‘out of the domain’’, as

needed. This occurred, for example, when the third-order splitting scheme, which requires an advective

update from time steps n, n� 1 and n� 2, was used to obtain the solution at timestep ðnþ 1ÞDt for n ¼ 0

and 1. In such cases, scalar information based on the analytic solution was assigned to the feet of the

affected characteristics. This allowed all time steps in the simulation to be performed with a uniform order

of splitting, which was important for these fairly short runs.
Figs. 6–8 show the computed scalar field and the error field at time t ¼ 1 for the first- to third-order

methods, respectively for a time step of 0.1 Cu ¼ ðj~VV jDtÞ=h ¼ 1:1
� �

. A maximum local error of approxi-

mately 1% was observed in the z ¼ 0 plane on this fairly coarse mesh and with this fairly large time step.

The L1 norm of error at time t ¼ 1 is shown in Table 1 for different values of Cu and different orders of

splitting.

Fig. 6. Horizontal slice (on z ¼ 0 plane) of the computed scalar field (left panel) and the error field (right panel) after 10 time steps of

0.1 in a 30 30 30 grid with first-order operator splitting approach (test case 2: advection–diffusion of a Gaussian sphere).
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Several points are noteworthy. First, there is only a weak dependence of error on splitting order. This
implies that other error sources are important. Two such sources exist: The error introduced by the ad-

vection solver (see [20]) and a spatial discretization error. Note that for this test case the equivalent dif-

ferential equation contains an extra term, not present in Eq. (24), that is proportional to Dx2. This means

Fig. 7. Horizontal slice (on z ¼ 0 plane) of the computed scalar field (left panel) and the error field (right panel) after 10 time steps of

0.1 in a 30 30 30 grid with second-order operator splitting approach (test case 2: advection–diffusion of a Gaussian sphere).

Fig. 8. Horizontal slice (on z ¼ 0 plane) of the computed scalar field (left panel) and the error field (right panel) after 10 time steps of

0.1 in a 30 30 30 grid with third-order operator splitting approach (test case 2: advection–diffusion of a Gaussian sphere).

Table 1

Dependence of error on Courant number and splitting order for test case 2: advection–diffusion of a Gaussian sphere

Dt Cu L1-norm of error

First order Second order Third order

0.025 0.275 0.0346 0.0479 0.0578

0.05 0.55 0.0151 0.0200 0.0255

0.1 1.1 0.0103 0.0101 0.0096

0.2 2.2 0.0086 0.0071 0.0060

0.33 3.7 0.0130 0.0084 0.0074
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that the spatial discretization is first-order accurate. For problems whose solution is characterized by re-
gions of steep gradient, such lower-order methods are in general competitive with high-order methods

[6,14]. For example, the most widely used schemes for shock capturing problems are first-order accurate.

The higher the order of the spatial discretization for non-smooth solutions, the worse the oscillations in the

approximation [14].

The spatial discretization error on this coarse mesh is reflected in pattern of square-like islands seen in

the error field (Figs. 6–8). In order to confirm that the spatial discretization error decreases as the mesh is

refined, a grid refinement study was performed using three sets of grids. The coarsest mesh (20 20 20

grid) consisted of 40,000 tetrahedral elements with 9261 corner nodes. The mesh with intermediate re-
finement (30 30 30 grid) had 135,000 elements with 29,791 nodes. The finest mesh (40 40 40 grid)

contained 320,000 elements with 68,921 nodes. As shown in Fig. 9, the mesh refinement monotonically

reduces the error between the numerical and exact solutions, hence confirming that the scheme is consistent.

The second noteworthy point is that error performance is not monotonically dependent on time step, Dt.
This is understood by noting that the splitting error increases monotonically with Dt while the error in the

advective solver varies non-monotonically with Dt over the Cu range of interest.

The third noteworthy point is that for small Cu, the total error actually increases with splitting order.

This is due to a combination of two effects. First, for such small Cu, the error due to the advective solver
dominates. Second, each time step in the kth order splitting scheme requires k independent advective solves
(see Eq. (6)), thereby providing an opportunity for error ‘‘accumulation’’ when the advective error is large.

From a practical viewpoint, this error behaviour complicates the application of this scheme to real-world

problems, where there typically exists a spectrum of velocity magnitudes and grid sizes over the compu-

tational domain. In such a case, one must obtain, as a pre-processing step, an estimate of how the ratio of
~VV =h varies on the domain and choose a suitable time step Dt so that the Courant number lies within an

acceptable range for the elements in the computational domain (see [20]).

3.2.3. Test case 3: Graetz–Nusselt solution

The algorithm was further tested using the problem of a developing heat/mass transfer boundary layer in

a hydrodynamically fully developed laminar flow in a cylindrical tube (the Graetz–Nusselt problem). This

problem, whose analytical solution is available by neglecting axial diffusion, is a commonly used bench-

mark problem for transport problems in blood flow where the Peclet numbers are in the range of 106 or

higher. Here, we assumed a Pe ¼ 2 107 based on the tube diameter. The boundary conditions were: c ¼ 1

at the inlet, c ¼ 0 on the walls, and rc �~nn ¼ 0 at the outlet.

3.2.3.1. Mesh construction. In highly advection-dominated transport problems, the boundary layer is very

thin throughout the whole domain, except in regions of flow separation. To resolve such thin boundary

layers, while keeping the mesh size within practical limits, stretched (high aspect ratio) elements are needed.

Creating highly stretched tetrahedral elements for 3-D unstructured grids is not trivial. Most commercial

mesh generation software packages do not allow this, since stretched elements are considered to be ‘‘bad

quality’’ elements. Elsewhere [19] we describe a general strategy for generating stretched tetrahedral ele-

ments in boundary layer regions. Here, we simplified the mesh generation process by taking advantage of

the regular domain geometry and the fact that the temperature/concentration profile is uniform outside the
thin heat/mass transfer boundary layer. We therefore created a mesh that only filled a portion of the cy-

lindrical tube. Specifically, we chose the computational domain to be a 15� sector of an annulus, with inner
and outer boundaries at r=R ¼ 0:9 and 1.0, respectively. The axial length of the computational domain was
set to be 5R. We imposed a homogeneous Neumann boundary condition on the inner boundary of the

mesh.

To create the mesh, we first generated a structured quadrilateral mesh in a ½�1; 1
3 cube and then divided
each quadrilateral into five tetrahedra. We then mapped the mesh onto the computational domain using a
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linear one-to-one mapping. The mapping from a point P with coordinates ðx; y; zÞ (where x; y; z 2 ½�1; 1
) to
a point P 0 with coordinates ðx0; y 0; z0Þ can be described as x0 ¼ r sin a, y0 ¼ r cos a and z0 ¼ ðL=2Þðzþ 1Þ. Here,
a ¼ ðx=aÞð/=2Þ, and r ¼ Rc þ y, where the variables are defined in Fig. 10. L is the desired axial length of the
annulus sector. Thus, for the present case we specified: L ¼ 5, R1 ¼ 0:9, R2 ¼ 1:0, and / ¼ p=12.

The nodes in the structured grid were arranged in the cube such that when they were mapped onto the

annulus, the off-wall spacing was 0.0008, i.e. 1/2500th of the tube diameter. 17 nodes were distributed across

the radial thickness of the annulus, 15 nodes along the arc, and 31 nodes along the axial distance (see Fig.

11). This resulted in a mesh with 37,800 tetrahedral elements (8,835 nodes).

Fig. 9. Grid refinment study: Horizontal slice (on z ¼ 0 plane) of the error field after 10 time steps of 0.1 in coarse 20 20 20 grid

(top row), intermediate 30 30 30 grid (middle row), and fine 40 40 40 grid (bottom row). Data with different orders of operator

splitting, namely first order (left panels), second order (middle panels) and third order (right panels) are presented for each level of

mesh refinement (test case 2: advection–diffusion of a Gaussian sphere).
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3.2.3.2. Convergence to steady state. The steady state solution was achieved by marching in time with time

steps of Dt ¼ 0:5 until the quantity kDckL1 reached 10�6 in single-precision computations, where Dc is the
difference in the the solution between two consecutive steps (Fig. 12). A time step of Dt ¼ 0:5 corresponds
to a maximum Courant number over the computational domain of approximately Cu ¼ 14, calculated

elementwise and based on the minimum internodal spacing in each element and the local velocity at that

node. The convergence history for kDckL1 is monotonic, but characterized by differing convergence rates

throughout the calculation. This can be attributed to a complex interplay between advection of numerical

information from the inlet throughout the computational domain and diffusion of the boundary infor-

mation from the walls.

Fig. 13 compares the normalized concentration gradient at the wall, i.e. the Sherwood number, for the
numerical and analytical solutions, versus the axial position (normalized by the tube radius, R). As the
figure demonstrates, the scheme accurately predicts solution gradients for this highly advection-dominated

situation. The discrepancy at the inlet (Z=R ’ 0) is due to the singularity in the analytical solution at the

inlet.

A ‘‘step’’ pattern is seen in the numerically computed curve. This pattern is an artifact of the coarseness

of the grid in the axial direction and the fact that simulations use linear finite elements. Because the mesh is

created by subdivision of a structured grid, each tetrahedral element has a twin which is aligned in the

opposite direction. Although the solution gradient is the same in each pair, their centroidal positions are
offset in the z direction. Fig. 13 shows the Sherwood number exhibited by each boundary element versus the

axial position of the centroidal point of the element. As a result, a step pattern is created which is more

pronounced near the inlet, i.e. at regions of high axial gradients in the solution. This step pattern implies

that a more axially refined mesh is needed at areas where high axial gradients are expected in the solution.

To further demonstrate this, a refined mesh was used which had 86,400 tetrahedral elements with 19,475

Fig. 10. A schematic of the mapping used to create the mesh in test case 3 (Graetz–Nusselt problem). Solid lines represent the box in

which the structured mesh was generated. Heavy lines represent the 15-degree annulus sector used as the computational domain.
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corner nodes. The Sherwood number distribution calculated using the refined mesh (see Fig. 14) confirms
that the step pattern decreases to a great extent and that the numerical scheme converges to the exact

solution as the mesh is refined. It must be remarked that due to the physical singularity inherent in the

problem (i.e. the thickness of the transport boundary layer is near zero at the inlet region), a full capture of

the boundary layer at the entrance region is impossible.

Fig. 11. A close-up of the mesh used for the test case 3 (Graetz–Nusselt problem). A 3-D view is shown at top left, a z ¼ constant slice

is shown at bottom, and a x ¼ constant slice is shown at right.

Fig. 12. Convergence history to the steady state solution with a time step of Dt ¼ 0:5 (test case 3: Graetz–Nusselt solution).

1294 M.R. Kaazempur-Mofrad et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1281–1298



3.3. CPU profile of the scheme

The CPU breakdown for the present operator splitting algorithm with the characteristic Galerkin

scheme for advection and the standard Galerkin scheme for diffusion is outlined in Table 2 for the first- to

third-order splitting methods when applied to the Graetz–Nusselt Problem. The algorithm was imple-

mented in C programming language, and run on a serial machine.

Fig. 13. Dimensionless gradient of the solution (Sherwood number ShD) on the wall versus axial position (Z=R) for test case 3: Graetz–
Nusselt problem.

Fig. 14. Dimensionless gradient of the solution (Sherwood number ShD) on the wall versus axial position (Z=R) for test case 3: Graetz–
Nusselt problem with the refined mesh. Comparison with Fig. 13 reveals that the step pattern is suppressed to a great extent as the

mesh is refined. The inset shows a closer look at the inlet region, where the near zero boundary layer thickness prevents full capture of

the solution gradient.
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The CPU profile in Table 2 corresponds to 100 time steps of Dt ¼ 1. The solver was a conjugate-gradient

solver with Jacobi pre-conditioning used for solving the linear systems arising in the advective update as

well as Eq. (6). The elemental search represents the location of departure points in the Eulerian grid, as

required for the advective solver [20]. The pre-processing category includes the matrix and vector for-

mations, data structure and memory allocations, setting up of the connectivity tables (i.e. node-to-node,

element-to-element, and element-to-node tables), calculating the elemental volumes, determining wall
(boundary) elements and their corresponding outward unit normal vector, etc. The post-processing task

includes calculating the error norms, computing the solution gradients, outputting the results, etc. Inter-

polation of nodal values and trajectory approximation (including the variable time step method for tra-

jectories that leave the domain near the inflow boundaries) is required for the advective solver.

Note that the conjugate-gradient solver�s share of CPU cost increases markedly with the splitting order.

This is due to the fact that splitting schemes of order 2 and above require the solution of additional linear

systems for the quantities ~cc. Note also that the above CPU breakdown is for a simulation in which the fluid

trajectories are not stored (see [20]). In steady state simulations, fluid trajectory information can be com-
puted and stored in a pre-processing step, and then used in subsequent time steps. This strategy effectively

removes as much as a third of the total CPU cost, since the elemental search must be performed only once.

4. Summary and conclusions

An algorithm based on operator splitting was successfully developed for solving unsteady, advection-

dominated transport problems. The algorithm incorporates a 3-D characteristic Galerkin scheme to treat
advection terms, and a standard Galerkin treatment of the diffusion terms. Up to third-order operator

splitting was implemented and validated against several analytical solutions. The algorithm showed con-

sistent error performance by achieving its expected nominal convergence rate for all test cases. Overall, the

present 3-D characteristic/FEM scheme exhibited good performance in modeling advection-dominated

transport problems. We have further demonstrated the viability of this scheme through application of the

present algorithm in the simulation of highly advection-dominated mass transport in an anatomically re-

alistic human right coronary artery [21], and in physiologically relevant axisymmetric and asymmetric

arterial stenosis [19].
The numerical tests and examples in the present work illustrate the effectiveness of the operator splitting

method for the advection-dominated transport problems. In this method, the two mathematically and

physically distinct operators of diffusion and advection are decoupled and each is treated by a numerical

scheme that best mimics the respective underlying physics. This approach is particularly appealing in ad-

vection-dominated transport problems with extremely high Pe values. The semi-Lagrangian nature of the

advection treatment allows stable and accurate solutions to these problems at fairly large CFL numbers, as

compared to fully Eulerian methods.

Table 2

CPU breakdown of the present algorithm, listed in descending order of CPU time

Task CPU breakdown

First order Second order Third order

Conjugate-gradient solver 36% 50% 58%

Elemental searching for departure points 33% 29% 25%

Pre- and post-processing 17% 10% 7%

Interpolation of nodal values 9% 7% 6%

Trajectory approximation 5% 4% 4%

See text for detailed description of each item.
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